Mathlete Training Centre Round 2 RIPMWC Open

2011 RIPMWC Open Round 2 Answers

RAINING C

1) Number of such numbers = $\frac{2011}{15} - \frac{2011}{60} = 134 - 33 = 101$

2) 1 + 111 + 11111 + 1111111 + ... + 111...111

There are
$$\frac{2011+1}{2} = 1006 \text{ terms}$$

1006

10050

100500

1004000

+ 10040000 = **55556**

e training c

3)
$$x + y = 7(x - y) \Rightarrow 8y = 6x$$

 $xy = 24(x - y) = 24x - 18x = 6x$
 $x(y - 6) = 0$
 $\Rightarrow y - 6 = 0$
 $y = 6$
 $\Rightarrow x = 8$
 $\therefore xy = 48$

4) Let the age of Mary's grandmother be 10x + y. Hence the age of Mary's mother is 10y + x. (10x + y) - (10y + x) > 0

$$9(x - y) > 0$$

$$0 < x - y < 9$$

$$9(x - y) = 4z \text{ (given)}$$

4 divides
$$(x-y)$$

$$x - y = 4$$
 or 8

Case 1: x - y = 8, x = 9, y = 1, $z = 18 \Rightarrow$ the ages of Mary, her mother and grandmother are respectively 18, 19 and 91 which is not possible.

Case 2: x - y = 4, z = 9. Possible ages for her grandmother and mother are respectively (62, 26), (73, 37), (84, 48), (95, 59).

Hence Mary's current age is 9.

- 5) After drawing 801 red balls, 801 yellow balls and 208 green balls, we need to draw 1 more ball to guarantee that we have at least 802 balls of the same color. Hence the minimum number = 801 + 801 + 208 + 1 = 1811
- 6) Let x = 201120112011. So, x + 2 = 201120112013 and x - 2 = 201120112009. $(201120112011 \times 201120112011) - (201120112013)(201120112009)$ $= x^2 - (x + 2)(x - 2)$

Perseverence Rigor Dedication 224 Bishan Street 23 B1-13

7) Let the total number of pupils in all the 3 classes be S and \$x\$ be the amount that each pupil in class C will get.

$$\frac{42S}{105} + \frac{42S}{98} + \frac{42S}{x} = S$$

$$\frac{2}{5} + \frac{3}{7} + \frac{42}{x} = 1$$

$$\frac{42}{x} = 1 - \frac{29}{35} = \frac{6}{35}$$

$$\Rightarrow x = 245$$

Each pupil in class C will get \$245.

8) Let 2C be the circumference. The ratio of the distances travelled by Ivan and Barry remains constant becasue their speeds are uniform.

i.e.,
$$\frac{C - 100}{100} = \frac{2C - 60}{C + 60}$$

 $\Rightarrow C^2 - 240C = 0$
 $\Rightarrow C = 240$

The circumference of the track is 480m.

9) From the table:

Column 1	Column 2	Column 3		
1 PERSEVERENCE RIGO	2 DEDICATION 224 BIS	3 AN STREET 23 BI-131		
4	5	6		
7	8	9		
10	11			

Page: 2 of 4

Observe that the sum of any 3 numbers from each column will be divisible by 3. Also when one number is selected from each column, the sum is divisible by 3. No. of triplets = $\binom{3}{3} + \binom{4}{3} + \binom{4}{3} + \binom{4}{1} \times \binom{4}{1} \times \binom{4}{1} \times \binom{4}{1} = 57$

10) By adding up the numbers 1001, 1111, 1221, ..., 1991, 2002, 2112, 2222, ..., 2992,

$$Sum = Sum \text{ of thousands} + Sum \text{ of hundreds} + Sum \text{ of tens} + Sum \text{ of units}$$

$$= \left(\frac{90000 + 10000}{2}\right) \times 9 + 45(100) \times 9 + 45(10) \times 9 + \left(\frac{90 + 10}{2}\right) \times 9 = 495000$$

11)
$$\frac{1}{3^{6}+1} + \frac{1}{3^{6}+3} + \frac{1}{3^{6}+3^{2}} + \frac{1}{3^{6}+3^{3}} + \dots + \frac{1}{3^{6}+3^{12}}$$

$$= \left(\frac{1}{3^{6}+1} + \frac{1}{3^{6}+3^{12}}\right) + \left(\frac{1}{3^{6}+3} + \frac{1}{3^{6}+3^{11}}\right) + \dots + \left(\frac{1}{3^{6}+3^{5}} + \frac{1}{3^{6}+3^{7}}\right) + \frac{1}{3^{6}+3^{6}}$$

$$= \frac{3^{6}+1}{3^{6}(3^{6}+1)} + \frac{3^{5}+1}{3^{6}(3^{5}+1)} + \dots + \frac{3+1}{3^{6}(3+1)} + \frac{1}{2(3^{6})}$$

$$= \frac{1}{3^{6}} + \dots + \frac{1}{3^{6}} + \frac{1}{2(3^{6})}$$

$$= \frac{13}{2} \times \frac{1}{3^{6}} = \frac{13}{1458}$$

12) The various combinations can be summarised in the table below:

One Beep												
Hr	Min	Hr	Min	Hr	Min	Hr	Min	Hr	Min	Hr	Min	
00	29 38 47 56	01 10	19 28 37 46 55	02 11 20	09 18 27 36 45 54	03 12 21	08 17 26 35 44 53	04 13 22	07 16 25 34 43 52	05 14 23	06 15 24 33 42 51	tion 224 Bishan Street 23 B1-13
Hr	Min	Hr	Min	Hr	Min	Hr	Min	Hr	Min	Hr	Min	
06 15	05 14 23 32 41 50	07 16	04 13 22 31 40	08 17	03 12 21 30	09 18	02 11 20	19	01 10	7		RAINING CENTE
					Two	Веер	s					
Hr	Min	Hr	Min	Hr	Min	Hr	Min	Hr	Min	Hr	Min	tion 224 Bishan Street 23 B1-1
08 17	59	09 18	49 58	19	39 48 57							

Total number of beeps = 4 + 10 + 18 + 18 + 18 + 18 + 12 + 10 + 8 + 6 + 2 + 4 + 8 + 6= 142

13) Let KM be the line segment through E parallel to AB with K on AD and M on BC. Let NL be the line segment through E parallel to AD with N on AB and L on DC.

Summing up areas of triangles APE, CES, CER and AQE.

Total area =
$$\frac{1}{2} \times 2 \times (KE + EM + LE + EN)$$

6 + 8 = KM + LN

$$14 = 2AB$$

$$AB = 7$$

Area of square = $7 \times 7 = 49 \text{ cm}^2$

14) Number of paths which does not pass through P

$$= \frac{10 \times 9 \times 8 \times 7 \times 6}{1 \times 2 \times 3 \times 4 \times 5} - \left(\frac{5 \times 4}{1 \times 2} \times \frac{5 \times 4}{1 \times 2}\right)$$
$$= 252 - 100 = 152$$

15) From the diagram,

$$BP_0 = 4 \Rightarrow CP_0 = 10 - 4 = 6$$

$$CP_1 = CP_0 = 6 \Rightarrow AP_1 = 9 - 6 = 3$$

$$AP_2 = AP_1 = 3 \Rightarrow BP_2 = 8 - 3 = 5$$

$$BP_3 = BP_2 = 5 \Rightarrow CP_3 = 10 - 5 = 5$$

$$CP_4 = CP_3 = 5 \Rightarrow AP_4 = 9 - 5 = 4$$

$$AP_5 = AP_4 = 4 \Rightarrow BP_5 = 8 - 4 = 4$$

$$BP_6 = BP_5 = 4 \Rightarrow CP_6 = 10 - 4 = 6$$

 P_6 and P_0 coincides.

$$2011 = 6 \times 335 + 1$$

 P_{2010} coincides with P_0

So P_{2011} is on AC such that $CP_{2011} = 6$ cm

 \therefore the shortest distance P_{2011} to $P_0 = 6 + 6 = 12$ cm.

Round 2